Digifesto

Category: economics

Notes on Krussell & Smith, 1998 and macroeconomic theory

I’m orienting towards a new field through my work on HARK. A key paper in this field is Krusell and Smith, 1998 “Income and wealth heterogeneity in the macroeconomy.” The learning curve here is quite steep. These are, as usual, my notes as I work with this new material.

Krusell and Smith are approaching the problem of macroeconomic modeling on a broad foundation. Within this paradigm, the economy is imagined as a large collection of people/households/consumers/laborers. These exist at a high level of abstraction and are imagined to be intergenerationally linked. A household might be an immortal dynasty.

There is only one good: capital. Capital works in an interesting way in the model. It is produced every time period by a combination of labor and other capital. It is distributed to the households, apportioned as both a return on household capital and as a wage for labor. It is also consumed each period, for the utility of the households. So all the capital that exists does so because it was created by labor in a prior period, but then saved from immediate consumption, then reinvested.

In other words, capital in this case is essentially money. All other “goods” are abstracted way into this single form of capital. The key thing about money is that it can be saved and reinvested, or consumed for immediate utility.

Households also can labor, when they have a job. There is an unemployment rate and in the model households are uniformly likely to be employed or not, no matter how much money they have. The wage return on labor is determined by an aggregate economic productivity function. There are good and bad economic periods. These are determine exogenously and randomly. There are good times and bad times; employment rates are determined accordingly. One major impetus for saving is insurance for bad times.

The problem raised by Krusell and Smith in this, what they call their ‘baseline model’, is that because all households are the same, the equilibrium distribution of wealth is far too even compared with realistic data. It’s more normally distributed than log-normally distributed. This is implicitly a critique at all prior macroeconomics, which had used the “representative agent” assumption. All agents were represented by one agent. So all agents are approximately as wealthy as all others.

Obviously, this is not the case. This work was done in the late 90’s, when the topic of wealth inequality was not nearly as front-and-center as it is in, say, today’s election cycle. It’s interesting that one reason why it might have not been front and center was because prior to 1998, mainstream macroeconomic theory didn’t have an account of how there could be such inequality.

The Krusell-Smith model’s explanation for inequality is, it must be said, a politically conservative one. They introduce minute differences in utility discount factor. The discount factor is how much you discount future utility compared to today’s utility. If you have a big discount factor, you’re going to want to consume more today. If you have a small discount factor, you’re more willing to save for tomorrow.

Krussell and Smith show that teeny tiny differences in discount factor, even if they are subject to a random walk around a mean with some persistence within households, leads to huge wealth disparities. Their conclusion is that “Poor households are poor because they’ve chosen to be poor”, by not saving more for the future.

I’ve heard, like one does, all kinds of critiques of Economics as an ideological discipline. It’s striking to read a landmark paper in the field with this conclusion. It strikes directly against other mainstream political narratives. For example, there is no accounting of “privilege” or inter-generational transfer of social capital in this model. And while they acknowledge that in other papers there is the discussion of whether having larger amounts of household capital leads to larger rates of return, Kruselll and Smith sidestep this and make it about household saving.

The tools and methods in the paper are quite fascinating. I’m looking forward to more work in this domain.

References

Krusell, P., & Smith, Jr, A. A. (1998). Income and wealth heterogeneity in the macroeconomy. Journal of political Economy106(5), 867-896.

Herbert Simon and the missing science of interagency

Few have ever written about the transformation of organizations by information technology with the clarity of Herbert Simon. Simon worked at a time when disciplines were being reconstructed and a shift was taking place. Older models of economic actors as profit maximizing agents able to find their optimal action were giving way as both practical experience and the exact sciences told a different story.

The rationality employed by firms today is not the capacity to choose the best action–what Simon calls substantive rationality. It is the capacity to engage in steps to discover better ways of acting–procedural rationality.

So we proceed step by step from the simple caricature of the firm depicted in textbooks to the complexities of real firms in the real world of business. At each step towards realism, the problem gradually changes from choosing the right course of action (substantive rationality) to finding way of calculating, very approximately, where a good course of action lies (procedural rationality). With this shift, the theory of the firm becomes a theory of estimation under uncertainty and a theory of computation.

Simon goes on to briefly describe the fields that he believes are poised to drive the strategic behavior of firms. These are Operations Research (OR) and artificial intelligence (AI). The goal of both these fields is to translate problems into mathematical specifications that can be executed by computers. There is some variation within these fields as to whether they aim at satisficing solutions or perfect answers to combinatorial problems, but for the purposes to this article they are the same–certainly the fields have cross-pollinated much since 1969.

Simon’s analysis was prescient. The impact of OR and AI on organizations simply can’t be understated. My purpose in writing this is to point to the still unsolved analytical problems of this paradigm. Simon notes that the computational techniques he refers to percolate only so far up the corporate ladder.

OR and AI have been applied mainly to business decisions at the middle levels of management. A vast range of top management decisions (e..g. strategic decisions about investment, R&D, specialization and diversification, recruitment, development, and retention of managerial talent) are still mostly handled traditionally, that is, by experienced executives’ exercise of judgment.

Simon’s proposal for how to make these kinds of decisions more scientific is the paradigm of “expert systems”, which did not, as far as I know, take off. However, these were early days, and indeed at large firms AI techniques are used to make these kinds of executive decisions. Though perhaps equally, executives defend their own prerogative for human judgment, for better or for worse.

The unsolved scientific problem that I find very motivating is based on a subtle divergence of how the intellectual fields have proceeded. Surely economic value and consequences of business activities are wrapped up not in the behavior of an individual firm, but of many firms. Even a single firm contains many agents. While in the past the need for mathematical tractability led to assumptions of perfect rationality for these agents, we are now far past that and “the theory of the firm becomes a theory of estimation under uncertainty and a theory of computation.” But the theory of decision-making under uncertainty and the theory of computation are largely poised to address problems of the solving a single agent’s specific task. The OR or AI system fulfills a specific function of middle management; it does not, by and large, oversee the interactions between departments, and so on. The complexity of what is widely called “politics” is not captured yet within the paradigms of AI, though anybody with an ounce of practical experience would note that politics is part of almost any organizational life.

How can these kinds of problems be addressed scientifically? What’s needed is a formal, computational framework for modeling the interaction of heterogeneous agents, and a systematic method of comparing the validity of these models. Interagential activity is necessarily quite complex; this is complexity that does not fit well into any available machine learning paradigm.

References

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA.

Bridging between transaction cost and traditional economics

Some time ago I was trying to get my head around transaction cost economics (TCE) because of its implications for the digital economy and cybersecurity. (1, 2, 3, 4, 5). I felt like I had a good grasp of the relevant theoretical claim of TCE which is the interaction between asset specificity and the make-or-buy decision. But I didn’t have a good sense of the mechanism that drove that claim.

I worked it out yesterday.

Recall that in the make or buy decision, a firm is determining whether or not to make some product in-house or to buy it from the market. This is a critical decision made by software and data companies, as often these businesses operate by assembling components and data streams into a new kind of service; these services often are the components and data streams used in other firms. And so on.

The most robust claim of TCE is that if the asset (component, service, data stream) is very specific to the application of the firm, then the firm will be more likely to make it. If the asset is more general-purpose, then it buy it as a commodity on the market.

Why is this? TCE does not attempt to describe this phenomenon in a mathematical model, at least as far as I have found. Nevertheless, this can be worked out with a much more general model of the economy.

Assume that for some technical component there are fix costs f and marginal costs $c$. Consider two extreme cases: in case A, the asset is so specific that only one firm will want to buy it. In case B, the asset is very general so there’s many firms that want to purchase it.

In case A, a vendor will have costs of f + c and so will only make the good if the buyer can compensate them at least that much. At the point where the buyer is paying for both the fixed and marginal costs of the product, they might as well own it! If there are other discovered downstream uses for the technology, that’s a revenue stream. Meanwhile, since the vendor in this case will have lock-in power over the buyer (because switching will mean paying the fixed cost to ramp up a new vendor), that gives the vendor market power. So, better to make the asset.

In case B, there’s broader market demand. It’s likely that there’s already multiple vendors in place who have made the fixed cost investment. The price to the buying firm is going to be closer to c, the market price that converges over time to the fixed cost, as opposed to c =+ f, which includes the fixed costs. Because there are multiple vendors, lock-in is not such an issue. Hence the good becomes a commodity.

A few notes on the implications of this for the informational economy:

  • Software libraries have high fixed cost and low marginal cost. The tendency of companies to tilt to open source cores with their products built on top is a natural result of the market. The modularity of open source software is in part explained by the ways “asset specificity” is shaped exogenously by the kinds of problems that need to be solved. The more general the problem, the more likely the solution has been made available open source. Note that there is still an important transaction cost at work here, the search cost. There’s just so many software libraries.
  • Data streams can vary a great deal as to whether and how they are asset specific. When data streams are highly customized to the downstream buyer, they are specific; the customization is both costly to the vendor and adding value to the buyer. However, it’s rarely possible to just “make” data: it needs to be sourced from somewhere. When firms buy data, it is normally in a subscription model that takes into account industrial organization issues (such as lock in) within the pricing.
  • Engineering talent, and related labor costs, are interesting in that for a proprietary system, engineering human capital gains tend to be asset specific, while for open technologies engineering skill is a commodity. The structure of the ‘tech business’, which requires mastery of open technology in order to build upon it a proprietary system, is a key dynamic that drives the software engineering practice.

There are a number of subtleties I’m missing in this account. I mentioned search costs in software libraries. There’s similar costs and concerns about the inherent riskiness of a data product: by definition, a data product is resolving some uncertainty with respect to some other goal or values. It must always be a kind of credence good. The engineering labor market is quite complex in no small part because it is exposed to the complexities of its products.

State regulation and/or corporate self-regulation

The dust from the recent debates about whether regulation or industrial self-regulation in the data/tech/AI industry appears to be settling. The smart money is on regulation and self-regulation being complementary for attaining the goal of an industry dominated by responsible actors. This trajectory leads to centralized corporate power that is lead from the top; it is a Hamiltonian not Jeffersonian solution, in Pasquale’s terms.

I am personally not inclined towards this solution. But I have been convinced to see it differently after a conversation today about environmentally sustainable supply chains in food manufacturing. Nestle, for example, has been internally changing its sourcing practices to more sustainable chocolate. It’s able to finance this change from its profits, and when it does change its internal policy, it operates on a scale that’s meaningful. It is able to make this transition in part because non-profits, NGO’s, and farmers cooperatives lay through groundwork for sustainable sourcing external to the company. This lowers the barriers to having Nestle switch over to new sources–they have already been subsidized through philanthropy and international aid investments.

Supply chain decisions, ‘make-or-buy’ decisions, are the heart of transaction cost economics (TCE) and critical to the constitution of institutions in general. What this story about sustainable sourcing tells us is that the configuration of private, public, and civil society institutions is complex, and that there are prospects for agency and change in the reconfiguration of those relationships. This is no different in the ‘tech sector’.

However, this theory of economic and political change is not popular; it does not have broad intellectual or media appeal. Why?

One reason may be because while it is a critical part of social structure, much of the supply chain is in the private sector, and hence is opaque. This is not a matter of transparency or interpretability of algorithms. This is about the fact that private institutions, by virtue of being ‘private’, do not have to report everything that they do and, probably, shouldn’t. But since so much of what is done by the massive private sector is of public import, there’s a danger of the privatization of public functions.

Another reason why this view of political change through the internal policy-making of enormous private corporations is unpopular is because it leaves decision-making up to a very small number of people–the elite managers of those corporations. The real disparity of power involved in private corporate governance means that the popular attitude towards that governance is, more often than not, irrelevant. Even less so that political elites, corporate elites are not accountable to a constituency. They are accountable, I suppose, to their shareholders, which have material interests disconnected from political will.

This disconnected shareholder will is one of the main reasons why I’m skeptical about the idea that large corporations and their internal policies are where we should place our hopes for moral leadership. But perhaps what I’m missing is the appropriate intellectual framework for how this will is shaped and what drives these kinds of corporate decisions. I still think TCE might provide insights that I’ve been missing. But I am on the lookout for other sources.

Ordoliberalism and industrial organization

There’s a nice op-ed by Wolfgang Münchau in FT, “The crisis of modern liberalism is down to market forces”.

Among other things, it reintroduces the term “ordoliberalism“, a particular Germanic kind of enlightened liberalism designed to prevent the kind of political collapse that had precipitated the war.

In Münchau’s account, the key insight of ordoliberalism is its attention to questions of social equality, but not through the mechanism of redistribution. Rather, ordoliberal interventions primarily effect industrial organization, favoring small to mid- sized companies.

As Germany’s economy remains robust and so far relatively politically stable, it’s interesting that ordoliberalism isn’t discussed more.

Another question that must be asked is to what extent the rise of computational institutions challenges the kind of industrial organization recommended by ordoliberalism. If computation induces corporate concentration, and there are not good policies for addressing that, then that’s due to a deficiency in our understanding of what ‘market forces’ are.

computational institutions

As the “AI ethics” debate metastasizes in my newsfeed and scholarly circles, I’m struck by the frustrations of technologists and ethicists who seem to be speaking past each other.

While these tensions play out along disciplinary fault-lines, for example, between technologists and science and technology studies (STS), the economic motivations are more often than not below the surface.

I believe this is to some extent a problem of the nomenclature, which is again the function of the disciplinary rifts involved.

Computer scientists work, generally speaking, on the design and analysis of computational systems. Many see their work as bounded by the demands of the portability and formalizability of technology (see Selbst et al., 2019). That’s their job.

This is endlessly unsatisfying to critics of the social impact of technology. STS scholars will insist on changing the subject to “sociotechnical systems”, a term that means something very general: the assemblage of people and artifacts that are not people. This, fairly, removes focus from the computational system and embeds it in a social environment.

A goal of this kind of work seems to be to hold computational systems, as they are deployed and used socially, accountable. It must be said that once this happens, we are no longer talking about the specialized domain of computer science per se. It is a wonder why STS scholars are so often picking fights with computer scientists, when their true beef seems to be with businesses that use and deploy technology.

The AI Now Institute has attempted to rebrand the problem by discussing “AI Systems” as, roughly, those sociotechnical systems that use AI. This is one the one hand more specific–AI is a particular kind of technology, and perhaps it has particular political consequences. But their analysis of AI systems quickly overflows into sweeping claims about “the technology industry”, and it’s clear that most of their recommendations have little to do with AI, and indeed are trying, once again, to change the subject from discussion of AI as a technology (a computer science research domain) to a broader set of social and political issues that do, in fact, have their own disciplines where they have been researched for years.

The problem, really, is not that any particular conversation is not happening, or is being excluded, or is being shut down. The problem is that the engineering focused conversation about AI-as-a-technology has grown very large and become an awkward synecdoche for the rise of major corporations like Google, Apple, Amazon, Facebook, and Netflix. As these corporations fund and motivate a lot of research, there’s a question of who is going to get pieces of the big pie of opportunity these companies represent, either in terms of research grants or impact due to regulation, education, etc.

But there are so many aspects of these corporations that are neither addressed by the terms “sociotechnical system”, which is just so broad, and “AI System”, which is as broad and rarely means what you’d think it does (that the system uses AI is incidental if not unnecessary; what matters is that it’s a company operating in a core social domain via primarily technological user interfaces). Neither of these gets at the unit of analysis that’s really of interest.

An alternative: “computational institution”. Computational, in the sense of computational cognitive science and computational social science: it denotes the essential role of theory of computation and statistics in explaining the behavior of the phenomenon being studied. “Institution”, in the sense of institutional economics: the unit is a firm, which is comprised of people, their equipment, and their economic relations, to their suppliers and customers. An economic lens would immediately bring into focus “the data heist” and the “role of machines” that Nissenbaum is concerned are being left to the side.

The secret to social forms has been in institutional economics all along?

A long-standing mystery for me has been about the ontology of social forms (1) (2): under what conditions is it right to call a particular assemblage of people a thing, and why? Most people don’t worry about this; in literatures I’m familiar with it’s easy to take a sociotechnical complex or assemblage, or a company, or whatever, as a basic unit of analysis.

A lot of the trickiness comes from thinking about this as a problem of identifying social structure (Sawyer, 200; Cederman, 2005). This implies that people are in some sense together and obeying shared norms, and raises questions about whether those norms exist in their own heads or not, and so on. So far I haven’t seen a lot that really nails it.

But what if the answer has been lurking in institutional economics all along? The “theory of the firm” is essentially a question of why a particular social form–the firm–exists as opposed to a bunch of disorganized transactions. The answers that have come up are quite good.

Take for example Holmstrom (1982), who argues that in a situation where collective outcomes depend on individual efforts, individuals will be tempted to free-ride. That makes it beneficial to have somebody monitor the activities of the other people and have their utility be tied to the net success of the organization. That person becomes the owner of the company, in a capitalist firm.

What’s nice about this example is that it explains social structure based on an efficiency argument; we would expect organizations shaped like this to be bigger and command more resources than others that are less well organized. And indeed, we have many enormous hierarchical organizations in the wild to observe!

Another theory of the firm is Williamson’s transaction cost economics (TCE) theory, which is largely about the make-or-buy decision. If the transaction between a business and its supplier has “asset specificity”, meaning that the asset being traded is specific to the two parties and their transaction, then any investment from either party will induce a kind of ‘lock-in’ or ‘switching cost’ or, in Williamson’s language, a ‘bilateral dependence’. The more of that dependence, the more a free market relationship between the two parties will expose them to opportunistic hazards. Hence, complex contracts, or in the extreme case outright ownership and internalization, tie the firms together.

I’d argue: bilateral dependence and the complex ‘contracts’ the connect entities are very much the stuff of “social forms”. Cooperation between people is valuable; the relation between people who cooperate is valuable as a consequence; and so both parties are ‘structurated’ (to mangle a Giddens term) individually into maintaining the reality of the relation!

References

Cederman, L.E., 2005. Computational models of social forms: Advancing generative process theory 1. American Journal of Sociology, 110(4), pp.864-893.

Holmstrom, Bengt. “Moral hazard in teams.” The Bell Journal of Economics (1982): 324-340.

Sawyer, R. Keith. “Simulating emergence and downward causation in small groups.” Multi-agent-based simulation. Springer Berlin Heidelberg, 2000. 49-67.

Williamson, Oliver E. “Transaction cost economics.” Handbook of new institutional economics. Springer, Berlin, Heidelberg, 2008. 41-65.

Transaction cost economics and privacy: looking at Hoofnagle and Whittington’s “Free”

As I’ve been reading about transaction cost economics (TCE) and independently scrutinizing the business model of search engines, it stands to reason that I should look to the key paper holding down the connection between TCE and privacy, Hoofnagle and Whittinton’s “Free: Accounting for the Costs of the Internet’s Most Popular Price” (2014).

I want to preface the topic by saying I stand by what I wrote earlier: that at the heart of what’s going on with search engines, you have a trade of attention; it requires imagining the user has have attention-time as a scarce resource. The user has a query and has the option to find material relevant to the query in a variety of ways (like going to a library). Often (!) they will do so in a way that costs them as little attention as possible: they use a search engine, which gives an almost instant and often high-quality response; they are also shown advertisements which consume some small amount of their attention, but less than they would expend searching through other means. Advertisers pay the search engine for this exposure to the user’s attention, which funds the service that is “free”, in dollars (but not in attention) to the users.

Hoofnagle and Whittington make a very different argument about what’s going on with “free” web services, which includes free search engines. They argue that the claim that these web services are “free” is deceptive because the user may incur costs after the transaction on account of potential uses of their personal data. An example:

The freemium business model Anderson refers to is popular among industries online. Among them, online games provide examples of free services with hidden costs. By prefacing play with the disclosure of personal identification, the firms that own and operate games can contact and monitor each person in ways that are difficult for the consumer to realize or foresee. This is the case for many games, including Disney’s “Club Penguin,” an entertainment website for children. After providing personal information to the firm, consumers of Club Penguin receive limited exposure to basic game features and can see numerous opportunities to enrich their play with additional features. In order to enrich the free service, consumers must buy all sort of enhancements, such as an upgraded igloo or pets for one’s penguin. Disney, like others in the industry, places financial value on the number of consumers it identifies, the personal information they provide, and the extent to which Disney can track consumer activity in order to modify the game and thus increase the rate of conversion of consumers from free players to paying customers.

There are a number of claims here. Let’s enumerate them:

  1. This is an example of a ‘free’ service with hidden costs to users.
  2. The consumer doesn’t know what the game company will do with their personal information.
  3. In fact, the game will use the personal information to personalize pitches for in-game purchases that ‘enrich’ the free service.
  4. The goal of the company is to convert free players to paying customers.

Working backwards, claim (4) is totally true. The company wants to make money by getting their customers to pay, and they will use personal information to make paying attractive to the customers (3). But this does not mean that the customer is always unwitting. Maybe children don’t understand the business model when they begin playing Penguin Club, but especially today parents certainly do. App Stores, for example, now label apps when they have “in-app purchases”, which is a pretty strong signal. Perhaps this is a recent change due to some saber rattling by the FTC, which to be fair would be attributable as a triumph to the authors if this article had influence on getting that to happen. On the other hand, this is a very simple form of customer notice.

I am not totally confident that even if (2), (3), and (4) are true, that that entails (1), that there are “hidden costs” to free services. Elsewhere, Hoofnagle and Whittington raise more convincing examples of “costs” to release of PII, including being denied a job and resolving identity theft. But being convincingly sold an upgraded igloo for your digital penguin seems so trivial. Even if it’s personalized, how could it be a hidden cost? It’s a separate transaction, no? Do you or do you not buy the igloo?

Parsing this through requires, perhaps, a deeper look at TCE. According to TCE, agents are boundedly rational (they can’t know everything) and opportunistic (they will make an advantageous decision in the moment). Meanwhile, the world is complicated. These conditions imply that there’s a lot of uncertainty about future behavior, as agents will act strategically in ways that they can’t themselves predict. Nevertheless, agents engage in contracts with some kinds of obligations in them in the course of a transaction. TCE’s point is that these contracts are always incomplete, meaning that there are always uncertainties left unresolved in contracts that will need to be negotiated in certain contingent cases. All these costs of drafting, negotiating, and safeguarding the agreement are transaction costs.

Take an example of software contracting, which I happen to know about from personal experience. A software vendor gets a contract from a client to do some customization. The client and the vendor negotiated some sort of scope of work ex ante. But always(!), the client doesn’t actually know what they want, and if the vendor delivers on the specification literally the client doesn’t like it. Then begins the ex post negotiation as the client tries to get the vendor to tweak the system into something more usable.

Software contracting often resolves this by getting off the fixed cost contracting model and onto a cost-and-materials contact that allows billing by hours of developer time. Alternatively, the vendor can internalize the costs into the contract by inflating the cost “estimates” to cover for contingencies. In general, this all amounts to having more contract and a stronger relationship between the client and vendor, a “bilateral dependency” which TCE sees as a natural evolution of the incomplete contract under several common conditions, like “asset specificity”, which means that the asset is specialized to a particular transaction (or the two agents involved in it). Another term for this is lock-in, or the presence of high switching costs, though this way of thinking about it reintroduces the idea of a classical market for essentially comparable goods and services that TCE is designed to mitigate against. This explains how technical dependencies of an organization become baked in more or less constitutionally as part of the organization, leading to the robustness of installed base of a computing platform over time.

This ebb and flow of contract negotiation with software vendors was a bit unsettling to me when I first encountered it on the job, but I think it’s safe to say that most people working in the industry accept this as How Things Work. Perhaps it’s the continued influence of orthodox economics that makes this all seem inefficient somehow, and TCE is the right way to conceptualize things that makes better sense of reality.

But back to the Penguins…

Hoofnagle and Whittington make the case that sharing PII with a service that then personalizes its offerings to you creates a kind of bilateral dependence between service and user. They also argue that loss of privacy, due to the many possible uses of this personal information (some nefarious), is a hidden cost that can be thought of as an ex post transaction cost that is a hazard because it has not been factored into the price ex ante. The fact that this data is valuable to the platform/service for paying their production costs, which is not part of the “free” transaction, is an indication that this data is a lot more valuable than consumers think it is.

I am still on the fence about this.

I can’t get over the feeling that successfully selling a user a personalized, upgraded digital igloo is such an absurd example of a “hidden cost” that it belies the whole argument that these services have hidden costs.

Splitting hairs perhaps, it seems reasonable to say that Penguin Club has a free version, which is negotiated as one transaction. Then, conditional on the first transaction, it offers personalized igloos for real dollars. This purchase, if engaged in, would be another, different transaction, not an ex post renegotiation of the original contract with the Disney. This small difference changes the cost of the igloo from a hidden transaction cost into a normal, transparent cost. So it’s no big deal!

Does the use of PII create a bilateral dependence between Disney and the users of Penguin Club? Yes, in a sense. Any application of attention to an information service, learning how to use it and getting it to be part of your life, is in a sense a bilateral dependence with a switching cost. But there are so many other free games to play on the internet that these costs seem hardly hidden. They could just be understood as part of the game. Meanwhile, we are basically unconcerned with Disney’s “dependence” on the consumer data, because Disney can get new users easily (unless the user is a “whale”, who actual pays the company). And “dependence” Disney has on particular users is a hidden cost for Disney, not for the user, and who cares about Disney.

The cases of identity theft or job loss are strange cases that seem to have more to do with freaky data reuse than what’s going on with a particular transaction. Purpose binding notices and restrictions, which are being normed on through generalized GDPR compliance, seem adequate to deal with these cases.

So, I have two conclusions:

(1) Maybe TCE is the right lens for making an economic argument for why purpose binding restrictions are a good idea. They make transactions with platforms less incomplete, avoiding the moral hazard of ex post use of data in ways that incurs asymmetrically unknown effects on users.

(2) This TCE analysis of platforms doesn’t address the explanatorily powerful point that attention is part of the trade. In addition to being concretely what the user is “giving up” to the platform and directly explaining monetization in some circumstances, the fact that attention is “sticky” and creates some amount of asset-specific learning is a feature of the information economy more generally. Maybe it needs a closer look.

References

Hoofnagle, Chris Jay, and Jan Whittington. “Free: accounting for the costs of the internet’s most popular price.” UCLA L. Rev. 61 (2013): 606.

Data isn’t labor because using search engines is really easy

A theme I’ve heard raised in a couple places recently, including Ibarra et al. “Should We Treat Data As Labor?” and the AI Now 2018 Report, is that there is something wrong with how “data”, particularly data “produced” by people on the web, is conceptualized as part of the economy. Creating data, the argument goes, requires labor. And as the product of labor, it should be protected according to the values and practices of labor movements in the past. In particular, the current uses of data in, say, targeted advertising, social media, and search, are exploitative; the idea that consumers ‘pay’ for these services with their data is misleading and ultimately unfair to the consumer. Somehow the value created by the data should be reapportioned back to the user.

This is a sexy and popular argument among a certain subset of intellectuals who care about these things. I believe the core emotional appeal of this proposal is this: It is well known that a few well-known search engine and social media companies, namely Google and Facebook, are rich. If the value added by user data were in part returned to the users, the users, who are compared to Google and Facebook not rich, would get something they otherwise would not get. I.e., the benefits for recognizing the labor involved in creating data is redistribution of surplus to The Rest of Us.

I don’t have a problem personally with that redistributive impulse. However, I don’t think the “data is labor” argument actually makes much sense.

Why not? Well, let’s take the example of a search engine. Here is the transaction between a user and a search engine:

  • Alice types a query, “avocado toast recipes”, into the search engine. This submits data to the company computers.
  • The company computers use that data to generate a list of results that it deems relevant to that query.
  • Alice sees the results, and maybe clicks on one or two of them, if they are good, in the process of navigating to the thing she was looking for in the first place.
  • The search engine records that click as well, in order to better calibrate how to respond to others making that query.

We might forget that the search engine is providing Alice a service and isn’t just a ubiquitous part of the infrastructure we should take for granted. The search engine has provided Alice with relevant search results. What this does is (dramatically) reduce Alice’s search costs; had she tried to find the relevant URL by asking her friends, organically surfing the web, or using the library, who knows what she would have found or how long it would take her. But we would assume that Alice is using the search engine because it gets her more relevant results, faster.

It is not clear how Alice could get this thing she wants without going through the motions of typing and clicking and submitting data. These actions all seem like a bare minimum of what is necessary to conduct this kind of transaction. Similarly, when I got to a grocery store and buy vegetables, I have to get out my credit card and swipe it at the machine. This creates data–the data about my credit card transaction. But I would never advocate for recognizing my hidden labor at the credit card machine is necessary to avoid the exploitation of the credit card companies, who then use that information to go about their business. That would be insane.

Indeed, it is a principle of user interface design that the most compelling user interfaces are those that require the least effort from their users. Using search engines is really, really easy because they are designed that way. The fact that oodles of data are collected from a person without that person exerting much effort may be problematic in a lot of ways. But it’s not problematic because it’s laborious for the user; it is designed and compelling precisely because it is labor-saving. The smart home device industry has taken this even further, building voice-activated products for people who would rather not use their hands to input data. That is, if anything, less labor for the user, but more data and more processing on the automated part of the transaction. That the data is work for the company, and less work for the user, indicates that data is not the same thing as user labor.

There is a version of this argument that brings up feminism. Women’s labor, feminists point out, has long been insufficiently recognized and not properly remunerated. For example, domestic labor traditionally performed by women has been taken for granted, and emotional labor (the work of controlling ones emotions on the job), which has often been feminized, has not been taken seriously enough. This is a problem, and the social cause of recognizing women’s labor and rewarding it is, ceteris paribus, a great thing. But, and I know I’m on dicey ground here, so bear with me, this does not mean that everything that women do that they are not paid to do is unrecognized labor in the sense that is relevant for feminist critiques. Case in point, both men and women use credit cards to buy things, and make telephone calls, and drive vehicles through toll booths, and use search engines, and do any number of things that generate “data”, and in most of these cases it is not remunerated directly; but this lack of remuneration isn’t gendered. I would say, perhaps controversially, that the feminist critique does not actually apply to the general case of user generated data much at all! (Though is may apply in specific cases that I haven’t thought of.)

So in conclusion, data isn’t labor, and labor isn’t data. They are different things. We may want a better, more just, political outcome with respect to the distribution of surplus from the technology economy. But trying to get there through an analogy between data and labor is a kind of incoherent way to go about it. We should come up with a better, different way.

So what’s a better alternative? If the revenue streams of search engines are any indication, then it would seem that users “pay” for search engines through being exposed to advertising. So the “resource” that users are giving up in order to use the search engine is attention, or mental time; hence the term, attention economy.

Framing the user cost of search engines in terms of attention does not easily lend itself to an argument for economic reform. Why? Because search engines are already saving people a lot of that attention by making it so easy to look stuff up. Really the transaction looks like:

  • Alice pays some attention to Gob (the search engine).
  • Gob gives Alice some good search results back in return, and then…
  • Gob passes on some of Alice’s attention through to Bob, the advertiser, in return for money.

So Alice gives up attention but gets back search results and the advertisement. Gob gets money. Bob gets attention. The “data” that matters is not the data transmitted from Alice’s computer up to Gob. Rather, the valuable data is the data that Alice receives through her eyes: of this data, the search results are positively valued, the advertisement is negatively valued, but the value of the bundled good is net positive.

If there is something unjust about this economic situation, it has to be due to the way consumer’s attention is being managed by Gob. Interestingly, those who have studied the value of ‘free’ services in attentional terms have chalked up a substantial consumer surplus due to saved attention (Brynjolfsson and Oh, 2012) This appears to be the perspective of management scientists, who tend to be pro-business, and is not a point repeated often by legal scholars, who tend to be more litigious in outlook. For example, legal scholarship has detailed the view of how attention could be abused through digital market manipulation (Calo, 2013).

Ironically for data-as-labor theorists, the search-engine-as-liberator-of-attention argument could be read as the view that what people get from using search engines is more time, or more ability to do other things with their time. In other words, we would use a search engine instead of some other, more laborious discovery mechanism precisely because it would cost us net negative labor. That absolutely throws a wrench in any argument that the users of search engines should be rewarded on dignity of labor grounds. Instead, what’s happened is that search engines are ubiquitous because consumers have undergone a phase transition in their willingness to work to discover things, and now very happily use search engines which, on the whole, seem like a pretty good deal! (The cost of being-advertised-to is small compared to the benefits of the search results.)

If we start seeing search engines as a compelling labor-saving device rather than a exploiter of laborious clickwork, then some of the disregard consumers have for privacy on search engines becomes more understandable. People are willing to give up their data, even if they would rather not, because search engines are saving them so much time. The privacy harms that come as consequence, then, can be seen as externalities to what is essentially a healthy transaction, rather than a perverse matter of a business model that is evil to the bone.

This is, I wager, on the whole a common sense view, one that I’d momentarily forgotten because of my intellectual milieu but now am ashamed to have overlooked. It is, on the whole, far more optimistic than other attempt to characterize the zeitgeist of new technology economy.

Somehow, this rubric for understanding the digital economy appears to have fallen out of fashion. Davenport and Beck (2001) wrote a business book declaring attention to be “the new currency of business”, which if the prior analysis is correct makes more sense than data being the new currency (or oil) of business. The term appears to have originated in an article by Goldhaber (1997). Ironically, the term appears to have had no uptake in the economics literature, despite it being the key to everything! The concept was understood, however, by Herbert Simon, in 1971 (see also Terranova, 2012):

In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes. What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.

(A digitized version of this essay, which amazingly appears to be set by a typewriter and then hand-edited (by Simon himself?) can be found here.)

This is where I bottom out–the discover that the line of thought I’ve been on all day starts with Herbert Simon, that the sciences of the artificial are not new, they are just forgotten (because of the glut of other information), and exhaustingly hyped. The attention economy discovered by Simon explains why each year we are surrounded with new theories about how to organize ourselves with technology, when perhaps the wisest perspectives on these topics are ones that will not hype themselves because their authors cannot tweet from the grave.

References

Arrieta-Ibarra, Imanol, et al. “Should We Treat Data as Labor? Moving beyond” Free”.” AEA Papers and Proceedings. Vol. 108. 2018.

Brynjolfsson, Erik, and JooHee Oh. “The attention economy: measuring the value of free digital services on the Internet.” (2012).

Calo, Ryan. “Digital market manipulation.” Geo. Wash. L. Rev. 82 (2013): 995.

Davenport, Thomas H., and John C. Beck. The attention economy: Understanding the new currency of business. Harvard Business Press, 2001.

Goldhaber, Michael H. “The attention economy and the net.” First Monday 2.4 (1997).

Simon, Herbert A. “Designing organizations for an information-rich world.” (1971): 37-72.

Terranova, Tiziana. “Attention, economy and the brain.” Culture Machine 13 (2012).