Digifesto

Tag: automation

Artisanal production, productivity and automation, economic engines

I’m continuing to read Moretti’s The new geography of jobs (2012). Except for the occasional gushing over the revolutionary-ness of some new payments startup, a symptom no doubt of being so close to Silicon Valley, it continues to be an enlightening and measured read on economic change.

There are a number of useful arguments and ideas from the book, which are probably sourced more generally from economics, which I’ll outline here, with my comments:

Local, artisanal production can never substitute for large-scale manufacturing. Moretti argues that while in many places in the United States local artisinal production has cropped up, it will never replace the work done by large-scale production. Why? Because by definition, local artisinal production is (a) geographically local, and therefore unable to scale beyond a certain region, and (b) defined in part by its uniqueness, differentiating it from mainstream products. In other words, if your local small-batch shop grows to the point where it competes with large-scale production, it is no longer local and small-batch.

Interestingly, this argument about production scaling echoes work on empirical heavy tail distributions in social and economic phenomena. A world where small-scale production constituted most of production would have an exponentially bounded distribution of firm productivity. The world doesn’t look that way, and so we have very very big companies, and many many small companies, and they coexist.

Higher labor productivity in a sector results in both a richer society and fewer jobs in that sector. Productivity is how much a person’s labor produces. The idea here is that when labor productivity increases, the firm that hires those laborers needs fewer people working to satisfy its demand. But those people will be paid more, because their labor is worth more to the firm.

I think Moretti is hand-waving a bit when he argues that a society only gets richer through increased labor productivity. I don’t follow it exactly.

But I do find it interesting that Moretti calls “increases in productivity” what many others would call “automation”. Several related phenomena are viewed critically in the popular discourse on job automation: more automation causes people to lose jobs; more automation causes some people to get richer (they are higher paid); this means there is a perhaps pernicious link between automation and inequality. One aspect of this is that automation is good for capitalists. But another aspect of this is that automation is good for lucky laborers whose productivity and earnings increase as a result of automation. It’s a more nuanced story than one that is only about job loss.

The economic engine of an economy is what brings in money, it need not be the largest sector of the economy. The idea here is that for a particular (local) economy, the economic engine of that economy will be what pulls in money from outside. Moretti argues that the economic engine must be a “trade sector”, meaning a sector that trades (sells) its goods beyond its borders. It is the workers in this trade-sector economic engine that then spend their income on the “non-trade” sector of local services, which includes schoolteachers, hairdressers, personal trainers, doctors, lawyers, etc. Moretti’s book is largely about how the innovation sector is the new economic engine of many American economies.

One thing that comes to mind reading this point is that not all economic engines are engaged in commercial trade. I’m thinking about Washington, DC, and the surrounding area; the economic engine there is obviously the federal government. Another strange kind of economic engine are top-tier research universities, like Carnegie Mellon or UC Berkeley. Top-tier research universities, unlike many other forms of educational institutions, are constantly selling their degrees to foreign students. This means that they can serve as an economic engine.

Overall, Moretti’s book is a useful guide to economic geography, one that clarifies the economic causes of a number of political tensions that are often discussed in a more heated and, to me, less useful way.

References

Moretti, Enrico. The new geography of jobs. Houghton Mifflin Harcourt, 2012.

Advertisements

the “hacker class”, automation, and smart capital

(Mood music for reading this post:)

I mentioned earlier that I no longer think hacker class consciousness is important.

As incongruous as this claim is now, I’ve explained that this is coming up as I go through old notes and discard them.

I found another page of notes that reminds me there was a little more nuance to my earlier position that I remembered, which has to do with the kind of labor done by “hackers”, a term I reserve the right to use in MIT/Eric S. Raymond sense, without the political baggage that has since attached to the term.

The point was in response to Eric. S. Raymond’s “How to be a hacker” essay which was that part of what it means to be a “hacker” is to hate drudgery. The whole point of programming a computer is so that you never have to do the same activity twice. Ideally, anything that’s repeatable about the activity gets delegated to the computer.

This is relevant in the contemporary political situation because we’re probably now dealing with the upshot of structural underemployment due to automation and the resulting inequalities. This remains a topic that scholarship, technologists, and politicians seem systematically unable to address directly even when they attempt to, because everybody who sees the writing on the wall is too busy trying to get the sweet end of that deal.

It’s a very old argument that those who own the means of production are able to negotiate for a better share of the surplus value created by their collaborations with labor. Those who own or invest in capital generally speaking would like to increase that share. So there’s market pressure to replace reliance of skilled labor, which is expensive, with reliance on less skilled labor, which is plentiful.

So what gets industrialists excited is smart capital, or a means of production that performs the “skilled” functions formerly performed by labor. Call it artificial intelligence. Call it machine learning. Call it data science. Call it “the technology industry”. That’s what’s happening and been happening for some time.

This leaves good work for a single economic class of people, those whose skills are precisely those that produce this smart capital.

I never figured out what the end result of this process would be. I imagined at one point that the creation of the right open source technology would bring about a profound economic transformation. A far fetched hunch.

Innovation, automation, and inequality

What is the economic relationship between innovation, automation, and inequality?

This is a recurring topic in the discussion of technology and the economy. It comes up when people are worried about a new innovation (such as data science) that threatens their livelihood. It also comes up in discussions of inequality, such as in Piketty’s Capital in the Twenty-First Century.

For technological pessimists, innovation implies automation, and automation suggests the transfer of surplus from many service providers to a technological monopolist providing a substitute service at greater scale (scale being one of the primary benefits of automation).

For Piketty, it’s the spread of innovation in the sense of the education of skilled labor that is primary force that counteracts capitalism’s tendency towards inequality and (he suggests) the implied instability. For the importance Piketty places on this process, he treats it hardly at all in his book.

Whether or not you buy Piketty’s analysis, the preceding discussion indicates how innovation can cut both for and against inequality. When there is innovation in capital goods, this increases inequality. When there is innovation in a kind of skilled technique that can be broadly taught, that decreases inequality by increasing the relative value of labor to capital (which is generally much more concentrated than labor).

I’m a software engineer in the Bay Area and realize that it’s easy to overestimate the importance of software in the economy at large. This is apparently an easy mistake for other people to make as well. Matthew Rognlie, the economist who has been declared Piketty’s latest and greatest challenger, thinks that software is an important new form of capital and draws certain conclusions based on this.

I agree that software is an important form of capital–exactly how important I cannot yet say. One reason why software is an especially interesting kind of capital is that it exists ambiguously as both a capital good and as a skilled technique. While naively one can consider software as an artifact in isolation from its social environment, in the dynamic information economy a piece of software is only as good as the sociotechnical system in which it is embedded. Hence, its value depends both on its affordances as a capital good and its role as an extension of labor technique. It is perhaps easiest to see the latter aspect of software by considering it a form of extended cognition on the part of the software developer. The human capital required to understand, reproduce, and maintain the software is attained by, for example, studying its source code and documentation.

All software is a form of innovation. All software automates something. There has been a lot written about the potential effects of software on inequality through its function in decision-making (for example: Solon Barocas, Andrew D. Selbst, “Big Data’s Disparate Impact” (link).) Much less has been said about the effects of software on inequality through its effects on industrial organization and the labor market. After having my antennas up for this for many reasons, I’ve come to a conclusion about why: it’s because the intersection between those who are concerned about inequality in society and those that can identify well enough with software engineers and other skilled laborers is quite small. As a result there is not a ready audience for this kind of analysis.

However unreceptive society may be to it, I think it’s still worth making the point that we already have a very common and robust compromise in the technology industry that recognizes software’s dual role as a capital good and labor technique. This compromise is open source software. Open source software can exist both as an unalienated extension of its developer’s cognition and as a capital good playing a role in a production process. Human capital tied to the software is liquid between the software’s users. Surplus due to open software innovations goes first to the software users, then second to the ecosystem of developers who sell services around it. Contrast this with the proprietary case, where surplus goes mainly to a singular entity that owns and sells the software rights as a monopolist. The former case is vastly better if one considers societal equality a positive outcome.

This has straightforward policy implications. As an alternative to Piketty’s proposed tax on capital, any policies that encourage open source software are ones that combat societal inequality. This includes procurement policies, which need not increase government spending. On the contrary, if governments procure primarily open software, that should lead to savings over time as their investment leads to a more competitive market for services. Equivalently, R&D funding to open science institutions results in more income equality than equivalent funding provided to private companies.