Tag: interpretivism

System 2 hegemony and its discontents

Recent conversations have brought me back to the third rail of different modalities of knowledge and their implications for academic disciplines. God help me. The chain leading up to this is: a reminder of how frustrating it was trying to work with social scientists who methodologically reject the explanatory power of statistics, an intellectual encounter with a 20th century “complex systems” theorist who also didn’t seem to understand statistics, and the slow realization that’s been bubbling up for me over the years that I probably need to write an article or book about the phenomenology of probability, because I can’t find anything satisfying about it.

The hypothesis I am now entertaining is that probabilistic or statistical reasoning is the intellectual crux, disciplinarily. What we now call “STEM” is all happy to embrace statistics as its main mode of empirical verification. This includes the use of mathematical proof for “exact” or a priori verification of methods. Sometimes the use of statistics is delayed or implicit; there is qualitative research that is totally consistent with statistical methods. But the key to this whole approach is that the fields, in combination, are striving for consistency.

But not everybody is on board with statistics! Why is that?

One reason may be because statistics is difficult to learn and execute. Doing probabilistic reasoning correctly is at times counter-intuitive. That means that quite literally it can make your head hurt to think about it.

There is a lot of very famous empirical cognitive psychology that has explored this topic in depth. The heuristics and biases research program of Kahneman and Tversky was critical for showing that human behavior rarely accords with decision-theoretic models of mathematical, probabilistic rationality. An intuitive, “fast”, prereflective form of thinking, (“System 1”) is capable of making snap judgments but is prone to biases such as the availability heuristic and the representativeness heuristic.

A couple general comments can be made about System 1. (These are taken from Tetlock’s review of this material in Superforecasting). First, a hallmark of System 1 is that it takes whatever evidence it is working with as given; it never second-guesses it or questions its validity. Second, System 1 is fantastic at provided verbal rationalizations and justifications of anything that it encounters, even when these can be shown to be disconnected from reality. Many colorful studies of split brain cases, but also many other lab experiments, show the willingness people have to make of stories to explain anything, and their unwillingness to say, “this could be due to one of a hundred different reasons, or a mix of them, and so I don’t know.”

The cognitive psychologists will also describe a System 2 cognitive process that is more deliberate and reflective. Presumably, this is the system that is sometimes capable of statistical or otherwise logical reasons. And a big part of statistical reasoning is questioning the source of your evidence. A robust application of System 2 reasoning is capable of overcoming System 1’s biases. At the level of institutional knowledge creation, the statistical sciences are comprised mainly of formalized, shared results of System 2 reasoning.

Tetlock’s work, from Expert Political Judgment and on, is remarkable for showing that deference to one or the other cognitive system is to some extent a robust personality trait. Famously, those of the “hedgehog” cognitive style, who apply System 1 and a simplistic theory of the world to interpret everything they experience, are especially bad at predicting the outcomes of political events (what are certainly the results of ‘complex systems’), whereas the “fox” cognitive style, which is more cautious about considering evidence and coming to judgments, outperforms them. It seems that Tetlock’s analysis weighs in favor of System 2 as a way of navigating complex systems.

I would argue that there are academic disciplines, especially those grounded in Heideggerian phenomenology, that see the “dominance” of institutions (such as academic disciplines) that are based around accumulations of System 2 knowledge as a problem or threat.

This reaction has several different guises:

  • A simple rejection of cognitive psychology, which has exposed the System 1/System 2 distinction, as “behaviorism”. (This obscures the way cognitive psychology was a major break away from behaviorism in the 50’s.)
  • A call for more “authentic experience”, couched in language suggesting ownership or the true subject of one’s experience, contrasting this with the more alienated forms of knowing that rely on scientific consensus.
  • An appeal to originality: System 2 tends to converge; my System 1 methods can come up with an exciting new idea!
  • The interpretivist methodological mandate for anthropological sensitivity to “emic”, or directly “lived experience”, of research subjects. This mandate sometimes blurs several individually valid motivations, such as: when emic experience is the subject matter in its own right, but (crucially) with the caveat that the results are not generalizable; when emic sensitivity is identified via the researcher’s reflexivity as a condition for research access; or when the purpose of the work is to surface or represent otherwise underrepresented views.

There are ways to qualify or limit these kinds of methodologies or commitments that makes them entirely above reproach. However, under these limits, their conclusions are always fragile. According to the hegemonic logic of System 2 institutions, a consensus of those thoroughly considering the statistical evidence can always supercede the “lived experience” of some group or individual. This is, at the methodological level, simply the idea that while we may make theory-laden observations, when those theories are disproved, those observations are invalidated as being influenced by erronenous theory. Indeed, mainstream scientific institutions take as their duty this kind of procedural objectivity. There is no such thing as science unless a lot of people are often being proven wrong.

This provokes a great deal of grievance. “Who made scientists, an unrepresentative class of people and machines disconnected from authentic experience, the arbiter of the real? Who are they to tell me I am wrong, or my experiences invalid?” And this is where we start to find trouble.

Perhaps most troubling is how this plays out at the level of psychodynamic politics. To have one’s lived experiences rejected, especially those lived experiences of trauma, and especially when those experiences are rejected wrongly, is deeply disturbing. One of the more mighty political tendencies of recent years has been the idea that whole classes of people are systematically subject to this treatment. This is one reason, among others, for influential calls for recalibrating the weight given to the experiences of otherwise marginalized people. This is what Furedi calls the therapeutic ethos of the Left. This is slightly different from, though often conflated with, the idea that recalibration is necessary to allow in more relevant data that was being otherwise excluded from consideration. This latter consideration comes up in a more managerialist discussion of creating technology that satisfies diverse stakeholders (…customers) through “participatory” design methods. The ambiguity of the term “bias”–does it mean a statistical error, or does it mean any tendency of an inferential system at all?–is sometimes leveraged to accomplish this conflation.

It is in practice very difficult to disentangle the different psychological motivations here. This is partly because they are deeply personal and mixed even at the level of the individual. (Highlighting this is why I have framed this in terms of the cognitive science literature). It is also partly because these issues are highly political as well. Being proven right, or wrong, has material consequences–sometimes. I’d argue: perhaps not as often as it should. But sometimes. And so there’s always a political interest, especially among those disinclined towards System 2 thinking, in maintaining a right to be wrong.

So it is hypothesized (perhaps going back to Lyotard) that at an institutional level there’s a persistent heterodox movement that rejects the ideal of communal intellectual integrity. Rather, it maintains that the field of authoritative knowledge must contain contradictions and disturbances of statistical scientific consensus. In Lyotard’s formulation, this heterodoxy seeks “legitimation by paralogy”, which suggests that its telos is at best a kind of creative intellectual emancipation from restrictive logics, generative of new ideas, but perhaps at worst a heterodoxy for its own sake.

This tendency has an uneasy relationship with the sociopolitical motive of a more integrated and representative society, which is often associated with the goal of social justice. If I understand these arguments directly, the idea is that, in practice, legitimized paralogy is a way of giving the underrepresented a platform. This has the benefits of increasing, visibly, representation. Here, paralogy is legitimized as a means of affirmative action, but not as a means improving system performance objectively.

This is a source of persistent difficulty and unease, as the paralogical tendency is never capable of truly emancipating itself, but rather, in its recuperated form, is always-already embedded in a hierarchy that it must deny to its initiates. Authenticity is subsumed, via agonism, to a procedural objectivity that proves it wrong.

How to tell the story about why stories don’t matter

I’m thinking of taking this seminar because I’m running into the problem it addresses: how do you pick a theoretical lens for academic writing?

This is related to a conversation I’ve found myself in repeatedly over the past weeks. A friend who studied Rhetoric insists that the narrative and framing of history is more important than the events and facts. A philosopher friend minimizes the historical impact of increased volumes of “raw footage”, because ultimately it’s the framing that will matter.

Yesterday I had the privilege of attending Techraking III, a conference put on by the Center for Investigative Reporting with the generous support and presence of Google. It was a conference about data journalism. The popular sentiment within the conference was that data doesn’t matter unless it’s told with a story, a framing.

I find this troubling because while I pay attention to this world and the way it frames itself, I also read the tech biz press carefully, and it tells a very different narrative. Data is worth billions of dollars. Even data exhaust, the data fumes that come from your information processing factory, can be recycled into valuable insights. Data is there to be mined for value. And if you are particularly genius at it, you can build an expert system that acts on the data without needing interpretation. You build an information processing machine that acts according to mechanical principles that approximate statistical laws, and these machines are powerful.

As social scientists realize they need to be data scientists, and journalists realize they need to be data journalists, there seems to be in practice a tacit admission of the data-driven counter-narrative. This tacit approval is contradicted by the explicit rhetoric that glorifies interpretation and narrative over data.

This is an interesting kind of contradiction, as it takes place as much in the psyche of the data scientist as anywhere else. It’s like the mouth doesn’t know what the hand is doing. This is entirely possible since our minds aren’t actually that coherent to start with. But it does make the process of collaboratively interacting with others in the data science field super complicated.

All this comes to a head when the data we are talking about isn’t something simple like sensor data about the weather but rather is something like text, which is both data and narrative simulatenously. We intuitively see the potential of treating narrative as something to be treated mechanically, statistically. We certainly see the effects of this in our daily lives. This is what the most powerful organizations in the world do all the time.

The irony is that the interpretivists, who are so quick to deny technological determinism, are the ones who are most vulnerable to being blindsided by “what technology wants.” Humanities departments are being slowly phased out, their funding cut. Why? Do they have an explanation for this? If interpetation/framing were as efficacious as they claim, they would be philosopher kings. So their sociopolitical situation contradicts their own rhetoric and ideology. Meanwhile, journalists who would like to believe that it’s the story that matters are, for the sake of job security, being corralled into classes to learn CSS, the programming language that determines, mechanically, the logic of formatting and presentation.

Sadly, neither mechanists nor interpretivists have much of an interest in engaging this contradiction. This is because interpretivists chase funding by reinforcing the narrative that they are critically important, and the work of mechanists speaks for itself in corporate accounting (an uninterpretive field) without explanation. So this contradiction falls mainly into the laps of those coordinating interaction between tribes. Managers who need to communicate between engineering and marketing. University administrators who have to juggle the interests of humanities and sciences. The leadership of investigative reporting non-profits who need to justify themselves to savvy foundations and who are removed enough from particular skillsets to be flexible.

Mechnanized information processing is becoming the new epistemic center. (Forgive me:) the Google supercomputer approximating statistics has replaced Kantian trancendental reason as the grounds for bourgious understanding of the world. This is threatening, of course, to the plurality of perspectives that do not themselves internalize the logic of machine learning. Where machine intelligence has succeeded, then, it has been by juggling this multitude of perspectives (and frames) through automated, data-driven processes. Machine intelligence is not comprehensible to lay interpretivism. Interestingly, lay interpetivism isn’t comprehensible yet to machine intelligence–natural language processing has not yet advanced so far. It treats our communications like we treat ants in an ant farm: a blooming buzzing confusion of arbitrary quanta, fascinatingly complex for its patterns that we cannot see. And when it makes mistakes–and it does often–we feel its effects as a structural force beyond our control. A change in the user interface of Facebook that suddenly exposes drunken college photos to employers and abusive ex-lovers.

What theoretical frame is adequate to tell this story, the story that’s determining the shape of knowledge today? For Lyotard, the postmodern condition is one in which metanarratives about the organization of knowledge collapse and leave only politics, power, and language games. The postmodern condition has gotten us into our present condition: industrial machine intelligence presiding over interpretivists battling in paralogical language games. When the interpretivists strike back, it looks like hipsters or Weird Twitter–paralogy as a subculture of resistance that can’t even acknowledge its own role as resistance for fear of recuperation.

We need a new metanarrative to get out of this mess. But what kind of theory could possibly satisfy all these constituents?

several words, all in a row, some about numbers

I am getting increasingly bewildered by number of different paradigms available in academic research. Naively, I had thought I had a pretty good handle on this sort of thing coming into it. After trying to tackle the subject head on this semester, I feel like my head will explode.

I’m going to try to break down the options.

  • Nobody likes positivism, which went out of style when Wittgenstein refuted his own Tractatus.
  • Postpositivists say, “Sure, there isn’t really observer-independent inquiry, but we can still approximate that through rigorous methods.” The goal is an accurate description of the subject matter. I suppose this fits into a vision of science being about prediction and control of the environment, so generalizability of results would be considered important. I’d argue that this is also consistent with American pragmatism. I think “postpositivist” is a terrible name and would rather talk/think about pragmatism.
  • Interpretivism, which seems to be a more fashionable term than antipositivism, is associated with Weber and Frankfurt school thinkers, as well as a feminist critique. The goal is for one reader (or scholarly community?) to understand another. “Understanding” here is understood intersubjectively–“I get you”. Interpretivists are skeptical of prediction and control as provided by a causal understanding. At times, this skepticism is expressed as a belief that causal understanding (of people) is impossible; other times it is expressed as a belief that causal understanding is nefarious.

Both teams share a common intellectual ancestor in Immanuel Kant, who few people bother to read.

Habermas has room in his overarching theory for multiple kinds of inquiry–technical, intersubjective, and emancipatory/dramaturgical–but winds up getting mobilized by the interpretivists. I suspect this is the case because research aimed at prediction and control is better funded, because it is more instrumental to power. And if you’ve got funding there’s little incentive to look to Habermas for validation.

It’s worth noting that mathematicians still basically run their own game. You can’t beat pure reason at the research game. Much computer science research falls into this category. Pragmatists will take advantage of mathematical reasoning. I think interpretivists find mathematics a bit threatening because it seems like the only way to “interpet” mathematicians is by learning the math that they are talking about. When intersubjective understanding requires understanding verbatim, that suggests the subject matter is more objectively true than not.

The gradual expansion of computer science towards the social science through “big data” analysis can be seen as a gradual expansion of what can be considered under mathematical closure.

Physicists still want to mathematize their descriptions of the universe. Some psychologists want to mathematize their descriptions. Some political scientists, sociologists, etc. want to mathematize their descriptions. Anthropologists don’t want to mathematize their descriptions. Mathematization is at the heart of the quantitative/qualitative dispute.

It’s worth noting that there are non-mathematized predictive theories, as well as mathematized theories that pretty much fail to predict anything.